
Introducing the Flexicious Flex Dashboard Platform

The Flexicious Dashboard Platform is a new product from Flexicious that
empowers RIA developers to provide feature rich, expressive, highly
customizable, and deeply engaging dashboard experience to their users.

It provides you with a lot of the base functionality that is standard in dashboard
applications, in addition to a number of highly productive features that is sure
to WOW your customers.

Right out of the box, you get:
A container for your dashboard that provides;

1. Support for configurable layout of dashlets, and provision for users to
move and resize dashlets, integrated with preference persistence so
dashboard loads exactly how the user left it.

2. Ability to organize dashlets in zones. Ability to drag and drop dashlets
between zones, again with preference persistence mechanism.

3. Ability to Print Preview and Print the dashboard or a single dashlet
4. Ability to export the Dashboard to PDF
5. Ability for your users to save the current view of the dashboard via
preferences

6. Ability Show/Hide Dashlets, control which dashlets appear where and at
what size.

7. An auto refresh mechanism
8. Ability to control dashlet operations including:

a. Move dashlets via a convenient drag and drop
b. Resize dashlets
c. Expand/Collapse Dashlets
d. Open/Close Dashlets
e. Maximize/Minimize Dashlets
f. Loading Animation

9. Based on the Spark skinning model, provides the ability to completely
skin the look and feel of the dashboard as well as the dashlets.

10. A number of professional, excellent looking built in skins

Check out the demo here
Read the getting started guide here.
Get the PDF copy of the Getting Started Guide here.
Download the trial here

Getting Started with the Flexicious Dashboard Framework.

The dashboard framework was built with a number of use cases in mind.

1) The first step is to download the trial project, which you can get from
http://www.flexicious.com/resources/trials/DashboardTrial.zip

2) Extract it to your local drive, and open it in Flash Builder. The zip above
is a full functional Flex project, the only missing piece being the Trail
SWC which you get in the next step.

3) When you request a trial, you are sent a 30 day trial swc
(DashboardTrial.swc), drop this swc in the libs folder of the project from
the step above.

4) Right click on ComponentSample.mxml -> run as -> Web Application.

In the sample project, we demonstrate a few major concepts:

1) Struture of a typical dashboard: The Dashboard container contains
one ore more Drag Drop Zone. If have seen the share point designer,
this is a concept similar to that. So in the overall container, you can
group dashlets on basis of their size and group them into one or more
drag drop zones. As we will see shortly, you do not need to have
multiple zones, in case you want a free flowing layout for your
dashlets, you can simply have a single drag drop zone, and wrap
them all in the same zone.

2) Layout of the dashboard zones: The main class for your dashboard is
the com.flexicious.components.dashboard.DashboardContainer. This
component indirectly extends from
spark.components.SkinnableContainer, and thus, inherits all of the
skinning capabilities introduced in Flex 4. As you will observe from
the examples, this plays a big role in how the component works. The
default skin for this component is the
com.flexicious.skins.dashboard.DashboardSkin. This skin contains the
top level title bar, and a group (the contentGroup) for the drag drop
zones.

3) We have demonstrated 4 separate ways of laying out your dashlets in
the samples. There can be more, but these should cover most
scenarios:
a. Drag Drop Zones with Vertical Layout Stacked horizontally side
by side: Basically, in this scenario, we have three drag drop
zones with widths set at 33% each, and height set at 100%. This
setup prevents the appearance of the scrollbar, and the
dashlets are individually positioned to occupy a set percentage
of the zones available area. So the layout mechanism here is:
i. Dashboard : Horizontal Layout
ii. Drag Drop Zones: Vertical Layout
iii. Please note, the mechanism to specify the Dashboard

Layout is via the “contentLayoutFunction”. This should
return a layout object. There is also the
maximizedContentLayoutFunction, which is the layout
used when the user maximizes a dashlet. The only

reason you would use this is to define padding and such
in the maximize view. The drag drop zones however,
define their layouts inline, as you can observe from the
examples.

iv. In this type of a layout, you may want to set the
“movable” and “resizable” flags of the dashlets to
false. This is because the layout and positions of the
dashlets are calculated by the layout you choose. If you
enable these flags, the users positions clash with the
layouts calculations and it results in a substandard
experience. However, these layouts are a good choice
for the “draggable” flag, where the user can drag and
drop dashlets so dashlets that are important to the user
can appear on top, and with the preference persistence
mechanism, these positions are then remembered when
the user loads the dashboard in the future.

b. Drag Drop Zones with Horizontal Layout Stacked Vertically :
Similar to the example above, but the drag drop zones are
stacked vertically here. So the layout mechanism here is:
i. Dashboard : Vertical Layout
ii. Drag Drop Zones: Horizontal Layout

c. Asymmetrical Drag Drop Zones: In this case, the dashboard
simply has a basic layout. In this specific example, we have
forced the zones to fit inside the visible area of the dashboard,
so there is no need for a scroll bar. However, this is not a
must. If you wish to add a scrollbar, please refer to the
example below. You simply really need to wrap the
contentGroup in a scroller. In this example, we have:
i. Dashboard : Basic Layout
ii. Drag Drop Zones: Layout defined per drag drop zone.

d. Single Drag Drop Zone, Basic Layout: In this example, we
simply have one zone. The dashlets define x (or left), y (or
top), width, height attributes. These are then used to render
the dashboard. This example also demonstrates addition of
scrollable content. The idea is simple. If the height of the
dashlets and their X/Y co-ordinates make the drawn dashlets
extend beyond the visual bounds of the dashboard containers
view port, scroll bars will be shown. The scroller is added via a
custom skin, as is demonstrated in the
com.flexicious.sample.dashboard.customskins.bright.Dashboar
dSkin
i. Dashboard : Basic Layout
ii. Drag Drop Zone: Basic Layout.
iii. Tip: In this layout mechanism, you might wish to use the

design view to define initial positions and sizes of your

dashlets. The way to do this would be to temporarily
move your dashlets inside the dashboard tag for using
the design view, and then moving them back into the
only drag drop zone in mxml once you are done
positioning your dashlets.

iv. In this type of a layout, you may want to set the
“movable” and “resizable” flags of the dashlets to true.
This is because a basic layout is similar to a canvas,
where each component defines its own bounds. So the
user is free to resize, move and drag dashlets around as
they see fit. With the preference persistence
mechanism, these positions are then remembered when
the user loads the dashboard in the future. Since there
is just one drag drop zone, it does not make sense to set
the “draggable” flag, since there are no other zones to
drag to, and the order of children dashlets does not
matter from a positioning persepective.

4) Skinning/UI customization for the dashboard and dashlets: Since both
the dashboard container as well as the dashlets extend from
SkinnableComponent, you can leverage the excellent skinning
mechanism that is a part of Flex 4. There are a few skins that you
will be interested in:
a. The Dashboard Skin: This is the skin responsible for drawing
the top level dashboard. Its main parts are:
i. Top Group

1. Button Group: The group responsible for holding
the buttons that you enable using the enable*
flags on the dashboard container.

2. Title Display: The label that shows the title.
ii. Content Group: The container responsible for holding
the drag drop zones that hold the individual dashlets.

iii. Maximized Content Group: The group that is brought
into view when the user maximizes an individual
dashlet.

b. The Dashlet Skin
i. Top Group

1. Button Group : Same as above
2. Title Display: Same as above

ii. Content Group: Same as above
c. The Dashboard Button Skin

i. There are specialized skins to only show the button icon
image, along with the normal, down, and up states.

d. The Dashboard Popup Button Skin
i. This is a special skin for the Flexicious
MultiSelectComboBox. (For those of you who did not
notice, the MultiSelectComboBox is the same

component that is used as a filter in the Flexicious
Grids). We are using it here as a UX for the user to
control which dashlets are visible. Since we want the
popup button to look like the other buttons, we have a
specialized skin that is used to achieve this look and
feel.

In the custom skins that ship as a part of the sample, we
demonstrate the usage of these skin parts to provide a fully
customizable look and feel to your dashboards.

5) API : As usual, the best way to understand any API is to see it in
action. So first step would be to download the trial project and play
with it. The second step would be to review the ASDocs. We are still
polishing and improving the ASDocs, but most items that you will
need to work with should be documented. The naming conventions
are very similar to what you are used to with the current Flexicious
API, in that there are numerous enable* flags on both the dashboard
object and the dashlet object.

